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Abstract--The Sinhala language is used as a 

national language only in Sri Lanka. The 60 

characters in the Sinhala alphabet are complex in 

shape in comparison to a language like English. There 

is no solid solution yet for Sinhala handwritten 

character recognition in the pattern recognition 

domain due to the excessive shapes and many 

perplexing characters available in the Sinhala 

language. Performance is low for real-world practical 

applications with the current best character 

recognizers. Two methods were experimented with in 

this paper, namely, a Convolutional Neural Network 

(CNN) and a Gabor-initialized CNN (GCNN). 

Further, the effect of introducing the dropout layer in 

both the proposed network architectures is 

investigated. Gabor filter parameters are examined 

individually to understand their impact of using 

GCNN for Sinhala handwritten character recognition. 

We determine the parameter values of the introduced 

GCNN architecture considering their impact on the 

model. 96.33 % training accuracy and 90.14% testing 

accuracy achieved in CNN model 1 with a 0.5 

dropout value is the highest accuracy for 60 

characters in Sinhala as per the current literature. 

Training and testing accuracy of the GCNN 

architecture are 95.15% and 80.00% consecutively. 

GCNN converges faster than the CNN model 1 

saving computational time and cost even though the 

training accuracy of GCNN is nearly 1% less than the 

CNN model 1. Hence, considering the accuracy and 

the processing speed the optimum method could be 

used for a live implementation of the work Sinhala 

character recognition application. 

Keywords—handwritten Sinhala character 

recognition, Convolutional Neural Networks, Gabor 

filter bank, Gabor initialized CNN 

I. INTRODUCTION 

Automatic handwritten character recognition has 

recently become a challenging research area in pattern 

recognition, providing both educational and  

 

Commercial value. The primary difficulty in 

recognising handwritten characters is handling 

different handwriting styles of individuals in various 

languages. In languages like Japanese, Laos, and 

Thai, isolated characters from each other are used. In 

contrast, in languages like Sinhala, English, and 

Bengali, characters are curved, complex, and 

sometimes the characters are connected. Hence, 

automatic recognition of handwritten characters is 

more challenging than printed characters. 

Nevertheless, character recognition is worsened by 

factors like various shapes of the characters, 

overlapping nature, and consecutive character 

overlapping.  

Sinhala alphabet contains 60 letters with vowels 

and consonants (Error! Reference source not 

found.). Most Sinhala characters are circular and 

have minimal vertical or horizontal lines. Even 

though each Sinhala character is unique in shape, 

some characters are different from the similar ones 

with minor variations. Every letter can be combined 

with 15 modifiers in the Sinhala resulting in more 

than 1,000 letters with different pronunciations. There 

are no simple and capital letter variations in Sinhala 

like in English. The script is written from left to right 

and the writing system is syllabic. Characters in a 

word are written separately from each other in a non-

cursive manner. Recognition of characters in Sinhala 

is a difficult task for regular simple character 

recognition methods due to the availability of many 

characters with a similar shape in Sinhala. Currently, 

many use cases demand highly accurate Sinhala 

handwritten character recognition such as post office 

automation, banking automation, and many more.  
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Figure 1. Sinhala alphabet 

Handwritten character recognition (HCR) is a 

process that facilitates the conversion of different 

kinds of handwritten documents into analyzable, 

editable, and searchable documents. The invention of 

the HCR mechanism has obtained notable attention 

from many researchers over the past, and many 

significant achievements have been made in this 

domain (Hewavitharana et al., 2002). However,  HCR 

is still challenging due to the variety of handwriting 

styles, similar characters, and different character 

categories (Rajapakse et al., 1995). 

CNN is used in this study due to its well-defined 

architecture and in-built feature extraction. CNN 

utilizes the convolution of images and filters to create 

invariant features that are transferred to the next layer 

and work well on image data. The computation cost 

of CNN is low due to minimal data preprocessing. 

Gabor filters are used in image processing for pre-

processing, edge detection, feature extraction, texture 

analysis, and feature modification (Petkov and 

Wieling, 2008). Gabor filters behave like human 

vision systems and are good for texture analysis tasks, 

separating texture information from images, hence 

applied to many applications such as face, speech, 

and vein recognition. Although CNN filters can 

extract higher-dimensional complex features, it has 

the drawbacks of overfitting and hindering 

generalization capability for a relatively low number 

of training samples. Since texture features can be well 

obtained a Gabor filter bank is used in this research 

instead of a trainable convolutional layer as the initial 

layer of the CNN. The use of a non-trainable Gabor 

filter bank as the first layer in CNN provides better 

accuracy on small datasets with no overfitting and 

better generalization on unseen data (Yuan et al., 

2022). Further, Gabor filters with CNN provide 

accurate results and significant improvement in 

convergence for handwritten character recognition 

applications (Gu et al., 2018) and the GCNN model 

increased the performance in terms of specificity and 

sensitivity (Petkov and Wieling, 2008). In comparison 

to different initialization methods, GCNN 

significantly outperformed even with noisy data and 

small training data size. 

This research aims to develop a model to recognize 

Sinhala handwritten text using deep learning 

techniques. CNN is examined with dropout (D) and 

Gabor filters to recognize the handwritten Sinhala 

character and a comprehensive comparison of the 

above approaches is performed to find out the best. 

The rest of the paper is organized as follows. 

Chapter 2 summarizes the literature review, chapter 3 

explains the proposed methodology, and chapter 4 

presents the results and discussion. 

II. LITERATURE REVIEW 

Handwritten character recognition is a branch of 

pattern recognition. Handwritten character 

recognition in languages like Sinhala is difficult 

compared to English due to the character curviness, 

size, and shape which depends on the individual 

writing speed, age, literacy, and writing style (Alom 

et al., 2018) (Wang and Yu, 2019). 

Since 90’s several approaches have been used for 

Sinhala handwritten character recognition, such as 

CNN (Wasalthilake and Kartheeswaran, 2020), 

Neural Networks (Rajapakse et al., 1995), Hidden 

Markov Model (Hewavitharana et al., 2002), 

Projection file methods (Nilaweera et al., 2007), and 

Contour tracing method (Silva et al., 2015). 

Most of the previous researchers used their datasets 

and had limitations such as a limited number of 

characters, algorithm complexity, less accuracy, and 

not being able to recognize touching characters. The 

proposed research hopes to address these limitations 

with higher accuracy. 

A. CNN 

CNN can detect image features and patterns and is 

suitable for image classification applications in 

computer vision. In 1980, Fukushima used CNN first 

(O’Shea and Nash, 2015) and LeCun et al. in the 

1990s obtained successful results by using CNN with 

a gradient-based learning algorithm (O’Shea and 

Nash, 2015). CNN can extract and abstract two-

dimensional features. Shape variations are well 

captured by the CNN max-pooling layers. The 

diminishing gradient problem can be solved by 

minimizing errors while using a gradient-based 

learning algorithm with CNN. Image spatial 

dependencies associated with image content are 

acquired by CNN for image recognition. The input 

image to feature vector transformation during training 

updates parameters, weights, and biases to better 

understand the image's nature (Albawi et al., 2017). 

i. Convolution 

Feature enhancement and sharpening are two 

examples of image manipulation which can be 

achieved with convolution. In convolution, a matrix 

(kernel or filter) passes through each pixel of an 

image and the pixel value is changed accordingly (Gu 

et al., 2018). The sub-matrix surrounded at each pixel 

is multiplied by the kernel and the original pixel value 

is replaced by the summation of the multiplication 

(Albawi et al., 2017). This operation should be carried 

out continuously for the whole image. Convolution 
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acquires low-level features such as color, border, 

orientation, and gradient and eliminates high-level 

features such as edges. Hence, this method reduces 

input image dimensionality (Wu, 2017). 

ii. Pooling 

Pooling is the second important CNN component. 

Pooling gradually decreases computational 

complexity within the network by increasing the 

spatial scale of the image description. Maximum, 

minimum, average, and adaptive pooling are several 

non-linear functions used in pooling implementation 

with maximum pooling (max-pooling) being the most 

common approach. Max-pooling reduces 

dimensionality resulting in low computing power 

while retaining important rotational and translational 

variants.  

Max-pooling extracts the maximum from the image 

portion encompassed by the kernel while average-

pooling better suppresses noise. It discards noisy 

activations and performs de-noising along with 

dimensionality reduction (Gu et al., 2018). The 

pooling layer controls overfitting by reducing 

parameter count, memory usage, and computation. In 

CNN, a pooling layer is used between consecutive 

convolutional layers with an activation function. CNN 

Pooling does not facilitate global translation 

invariance, instead contributes to a local translation 

invariance in the form of global pooling (Albawi et 

al., 2017). The pooling resizes input spatially by 

independently applying on every depth or slice of the 

input. 

iii. Fully connected layer 

A fully connected layer is used at the end of CNN. 

CNN weights are calculated during training. Based on 

the convolution and pooling layer results fully 

connected layer determines the best-matched label 

that represents the original image. Hence, the 

connection of the image feature vector with the class 

of the image is decided by the fully connected layer. 

Convolution or pooling layer outputs are multiplied 

by the network weights. Finally, the result is passed 

through an activation function (O’Shea and Nash, 

2015). 

B. Dropout for regularizing 

Deep learning neural networks are expected to 

overfit quickly as fully connected layers engage in 

most of the parameters. Ensembles of neural networks 

with various model configurations are facilitated to 

decrease overfitting, but it needs extra computational 

effort (Jain, 2018). Dropouts are randomly dropping 

out nodes during training which provides an efficient 

and effective regularization reducing overfitting and 

improving generalization error in DNNs. By 

preventing the training of all nodes on the training 

data set, dropout decreases overfitting. This method 

remarkably upgrades training speed. The dropout 

technique helps to reduce inter-node interactions by 

facilitating the learning of more powerful features that 

better generalize to new data fields (Anello, 2021). 

Each neuron in layers behaves independently in 

comparison to others due to the application of the 

dropout effect in the model. Even though the 

increased training time is disadvantageous, the 

significant increase in accuracy, especially for larger 

datasets is more advantageous. 

C. Gabor filters 

Gabor filter analyzes the image to capture any 

specific frequency content in specific directions in a 

localized region around the point of analysis (Gabor, 

1946). Gabor filters are formulated using a Gaussian 

kernel function modulated by a sinusoidal wave. The 

Gabor filter’s complex equation is, 

, (1) 

where, its real and imaginary parts are, 

, and (2) 

, (3) 

where, λ is the wavelength of the sinusoidal factor, θ 

is the orientation of the normal to the parallel stripes 

of a Gabor function, and ψ is the phase offset, σ is the 

standard deviation of the Gaussian envelope, and γ is 

the spatial aspect ratio and specifies the ellipticity of 

the Gabor function. Equations (4) and (5) represent 

what controls the center frequency of the Gabor filter 

representing the filter’s highest response. 

 

 , (4) 

 . (5) 

 

The Gabor filter’s power spectrum is formulated by 

two sine wave impulses and a Gaussian. As we know, 

frequency domain convolution is equal to the spatial 

domain multiplication. However, since the 

uncertainty principle reveals the impossibility of 

precisely determining both the frequency of a particle 

and a snapshot of time, accurate measurement of its 

counterpart becomes challenging (Alekseev and 

Bobe, 2019). In the application of analyzing texture 

or obtaining features from an image, a bank of Gabor 

filters with several different orientations should be 

applied (Wu, 2021). When Gabor filters are applied to 
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an image, it acts similarly to conventional filters. 

When a Gabor filter is used on an image, it provides 

the highest extraction at edges and points where 

texture changes. Gabor filters react to edges and 

texture changes in the image which means the filter 

has a distinguishing value at the spatial position of 

that feature. 

 

 

III. METHODOLOGY 

Dataset creation and the three models used namely, 

CNN model 1, CNN model 2, and GCNN model are 

explained in this section. The proposed method 

includes two basic steps namely, pre-processing 

(labeling images and resizing to 28 × 28) and CNN 

model (converting to grayscale, feature extraction, 

classification, and recognition) as shown in Figure 2. 

However, the performance of the CNN model is 

dependent on the parameter values of the architecture. 

Therefore, creating the model with optimum 

parameter values is required by fine-tuning and 

testing the model at various times. In this research, 

the trial and error method is followed to find out the 

optimal parameter set for CNN models. 

 

  
Figure 2. The proposed architecture. 

 

D. Dataset 

Since the unavailability of a proper Sinhala 

handwritten character image dataset, it was required 

to construct a dataset using appropriate mechanisms. 

The constructed image dataset contains all 60 Sinhala 

characters in the alphabet. The previous research 

regarding Sinhala character recognition using deep 

learning approaches was not carried out for all 60 

Sinhala characters (Wasalthilake and Kartheeswaran, 

2020), (Nilaweera et al., 2007). The constructed 

dataset contained a total of 6,000 black and white 

images in .png format. These handwritten character 

images were gathered using the MS Paint application. 

To collect images of Sinhala characters, twenty-five 

numbers of different writers were selected with age 

groups between 6 to 60 years, including both gender 

types. One writer provided four samples of one 

Sinhala letter for all 60 characters creating a total of 

6,000 samples of images. The collection of these 

Sinhala handwritten characters was used as the 

dataset needed to train the deep neural network and 

test. 

E. CNN model 1 

The architecture of CNN model 1 is as follows 

(Figure 3 top). A convolutional layer with 32 

Rectified Linear Unit (ReLU) activated filters of size 

5 × 5 is the first layer. This is the most significant 

layer in the proposed GCNN architecture as it 

modifies the first layer initialization to the Gabor 

filter from the default Xavier (Glorot) initialization. 

The second and third layers are convolutional layers 

with 32 and 64 filters consecutively of size 3 × 3 and 

ReLU activation. The data then pass to a 2×2 max-

pooling layer with a stride of 2, a ReLU-activated 

third convolutional layer of 128 number of 3×3 filters, 

and a 2×2 max-pooling layer with a stride of 2. Then 

it goes through a fourth convolution layer which has 

ReLU activated 3×3 256 filters. Next, the data is 

passed to a 2×2 max-pooling layer with a stride of 2. 

The output is then fed into two fully connected layers, 

where the final fully connected layer uses a softmax 

activation for classification. The dropout effect was 

applied during training before the softmax activation 

and after the first fully connected layer. Four dropout 

values D ∈ {0.0, 0.25, 0.5, 0.8} have been used to 

obtain the optimal dropout value for the models. In 

this model, all parameters of the convolutional layers 

are Xavier initialized and all biases are zero-

initialized. CNN model 1’s optimization algorithm 

was the stochastic gradient descent (SGD). The 

selected hyperparameters for learning rate, learning 
rate decay, and momentum are 0.01, 0.0005, and 0.9 

respectively. The categorical cross-entropy is used as 

the loss function
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Figure 3. CNN architectures, top: CNN model 1, middle: CNN model 2, and bottom: GCNN model. 

 

F. CNN model 2 

As discussed in subsection Error! Reference 

source not found., the CNN performance depends on 

the parameter values. Therefore, it is required to 

design the model with optimum parameter values by 

tuning and testing the model numerous times. 

Typically, the pooling layers are used after the 

convolution layers of the model. Having a pooling 

layer after the input layer increases accuracy by 4% 

(Wasalthilake and Kartheeswaran, 2020). Hence a 

max-pooling layer is inserted after the input layer in 

the CNN model 2. 

The CNN model 2 architecture is as follows 

(Figure 3 middle). The first layer is a max-pooling 

layer of size 2 × 2 with a stride of 2 and it is applied 

directly after the input layer. The next layer is a 

convolutional layer that contains ReLU-activated 32, 

3×3 filters. The third layer is a convolutional layer 

with ReLU-activated 64, 3×3 filters. Then data passes 

to a convolutional layer of ReLU activated 128, 3×3 

filters, and a 2×2 max-pooling layer with a stride of 2. 

Then it goes through a convolution layer that has 

ReLU activated 256, 3×3 filters. The data was then 

passed to a 2×2 max-pooling layer with a stride of 2. 

The output is then fed into two fully connected layers, 

where the final fully connected layer uses a softmax 

activation for classification. The dropout effect was 

applied during training before the softmax activation 

and after the first fully connected layer. Four dropout 

values D = {0.0, 0.25, 0.5, 0.8} have been used to 

obtain the optimal dropout value for the model. In this 

model, all convolutional layers Xavier initiated. All 

biases are zero-initiated. CNN model 2 uses the SGD 

optimization. The selected hyperparameters for 

learning rate, learning rate decay, and momentum are 

0.01, 0.0005, and 0.9 respectively. The loss function 

is formed on the Categorical cross-entropy. 

G. GCNN model 

The GCNN model is similar to the CNN model 1 in 

sub-section 1E, except the Xavier in the first layer is 

replaced by a Gabor filter bank (Figure 3 bottom). 

The first layer is a convolutional layer that contains 

Gabor-initiated, ReLU-activated 32, 5×5 filters. The 

second layer is a convolutional layer with ReLU-

activated 64, 3×3 filters. Then data goes through a 

3×3 max-pooling layer with a stride of 2. Next, the 

data passed to a third convolutional layer of ReLU-

activated 128, 3×3 filters, and a fourth convolutional 

layer, which has ReLU-activated 256, 3×3 filters. 

Then output data passed through another 3×3 max-

pooling layer with a stride of 2. After that, the output 

is fed into two fully connected layers. The final fully 

connected layer is implemented using a softmax 

activation for classification. The dropout function is 

used during training before the softmax activation 

with four different values D = {0.0, 0.25, 0.50, 0.80}. 

The most important aspect is that all convolutional 

layers beside the first layer are initialized with the 

Xavier for the parameters. All biases are zero-

initialized and the RMSprop optimizer was used. The 

preferred hyperparameters for learning rate, 

momentum, and learning rate decay are 0.01, 0.9, and 

0.0005 respectively. The Categorical cross-entropy 

was used as the loss function. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

A. CNN models 

Training and testing sizes for all experiments were 

3,600 and 2,400 images respectively. Both CNN 

architectures were tested for 30 epochs and were 

trained using a learning rate of 0.001 and 

implemented with an SGD optimizer. All CNN 

architectures are experimented with four different 

G
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dropout values to determine how the dropout effect 

improves the performance of the CNN models. 

The results of CNN models 1 and 2 are listed in 

Table 1 and plotted in Figure 4. Both CNN models 

were trained and tested with different dropout values 

D ∈ {0.0, 0.25, 0.5, and 0.8} for 50 epochs. The 

highest training and testing accuracies were 0.9994 

when D = 0.0 and 0.9014 when D = 0.5 for model 1; 

and 0.9997 when D = 0.0 and 0.7942 when D = 0.5 

for model 2.  

 

Table 1. Results of CNN models 1 and 2. 

Dropout 

CNN model 1 CNN model 2 

Training Testing Training Testing 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

0.00 0.9994 0.0025 0.8407 0.7662 0.9997 0.0013 0.7693 1.3529 

0.25 0.9888 0.0327 0.8502 0.8360 0.9891 0.0334 0.7706 1.2502 

0.50 0.9633 0.0976 0.9014 0.4514 0.9417 0.1543 0.7942 1.0058 

0.80 0.6203 1.1180 0.8485 0.4735 0.3430 2.1192 0.5807 1.4657 

 

As per Figure 4, for both CNN models, training 

accuracy reduces with dropout and rapidly decreases 

when D > 0.5. But testing accuracy slightly increased 

till D = 0.5 and then reduced. Training and testing 

loss of both CNN models increased with dropout and 

it rapidly increases for higher dropout values. In 

addition, the training and testing accuracy of CNN 

model 1 is greater than that of model 2. So, 

introducing a max-pooling layer between the data 

input layer and the convolution layer does not 

improve the training and testing accuracy for the 

constructed Sinhala character dataset. 

Even though research conducted by Wasalthilake 

(Wasalthilake and Kartheeswaran, 2020) claimed that 

the accuracy could be improved by feeding input 

images directly to the max-pooling layer before the 

convolution layer, this research could not achieve 

such improvement in the performance of CNN for the 

constructed character dataset. The CNN model 1 

achieved 0.9633 training accuracy and 0.9014 testing 

accuracy with D = 0.5 for 60 classes of characters. 

 

 
Figure 4. Accuracy and loss vs dropout for CNN models 1 and 2. 

 

B. GCNN model 

This experiment was carried out to investigate the 

behavior of each parameter used in the Gabor filter 

and to determine the significance of each parameter 

over the GCNN model concerning the Sinhala 

character dataset. In addition, the effect of dropout is 

also investigated under four test cases. Gabor filters 

of the first layer are initiated using the grid search 

algorithm. 

The main objective of the GCNN was to achieve 

reasonable energy saving in computation time by 

decreasing the complexity of the CNN network by 

utilizing error resilience. In the GCNN, trained layers 

of CNN are replaced by fixed Gabor kernels and 

hence CNN can eliminate these expensive 

computation methods within the layers with the same 

or higher accuracy levels. 

 

i. Behavior of Gabor parameters 

The Gabor filter bank was applied to initialize the 

first layer to determine the influence of each 

parameter on the overall GCNN model. The Gabor 

filters used are the same for all tests where each 

parameter is tested and changed once per test. An 

example parameter list is k = 5×5, σ = σ', λ = 50, θ = 

0, γ = 150, ψ = 0, where k is the filter size, σ' is a 

static constant number in the closed interval [2, 22] 

for σ parameter. All filters in the Gabor filter bank are 

the same. Each test was trained for 30 epochs and the 

filter size was 5 × 5 for all test cases in this 

experiment at 32 filters in the initial layer. 

As described above, the Gabor filter bank is kept 

static for each test, and the training and generated 

Gabor filters allow learning through training. The 

parameter values selected for the test cases were 

based on previous research (Özbulak and Ekenel, 

2018). Tunable Gabor filter parameters are explained 

below. Furthermore, the experiment was also 

designed to determine the impact of the dropout effect 

on the quality of results. Here, two different dropout 

values of D ∈  {0, 0.50} were applied. Each test 

contains 30 epochs. The number of Gabor filters 

generated is constant at 32 filters. Each test is 

conducted once per parameter change for all 

parameters. Consider one test run, σ = 2, while other 

variables (k, σ, λ, θ, γ, ψ) in the Gabor filter are kept 

constant and in the next test case, σ is a fixed 

increment to σ = 4 and the other variables (k, σ, λ, θ, γ, 
ψ) are fixed. Each Gabor parameter contained six test 

cases with different ranges and increments as 

illustrated in Table 2. Therefore, for one given Gabor 

parameter, a total of twelve tests have been conducted 

considering the two dropout values. θ and ψ values of 

0 and 360 provided the same result, so one value is 

considered. 

 
Table 2. Gabor parameter test cases 

Parameter Dropout k σ λ θ γ ψ 

σ 

{0, 0.5} 5 × 5 

[2, 22] 

2, 6, 10, 

14, 18, 

22 

10 

0 
150 0 

λ 
4 

[0, 100] 

0, 20, 

40, 60, 

80, 100 

θ 10 [0, 300] 



Karunarathne, Wijesiriwardana, Nishantha and Kumara | SLJoT 
 

 

 

Copyright ©2024 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka 

 

19 

0, 60, 

120, 

180, 

240, 300 

γ 

0 

[0, 300] 

0, 60, 

120, 

180, 

240, 300 

ψ 150 

[0, 300] 

0, 60, 

120, 

180, 

240, 300 

 

In the σ test, a static first layer was implemented 

using the Gabor filter bank by changing the σ ∈{2, 6, 

10, 14, 18, 22} and D ∈ {0.0, 0.5}. Training and 

validation accuracy achieved are illustrated in Error! 

Reference source not found.(a1). In the λ test, a 

static first layer was developed using the Gabor filter 

bank by changing the λ ∈{0, 20, 40, 60, 80, 100} and 

D ∈  {0.0, 0.5}. Training and validation accuracy 

achieved are illustrated in Error! Reference source 

not found.(b1). For the θ test, a static first layer was 

implemented using the Gabor filter bank by only 

changing the θ ∈ {0, 60, 120, 180, 240, 300} and D 

∈ {0.0, 0.5}. θ calculating at 0 and 360 provided the 

same result, so the 360 test case was neglected. 

Training and validation accuracies achieved are 

illustrated in Error! Reference source not 

found.(c1). For the γ test, a static first layer was 

implemented using the Gabor filter bank by changing 

the γ ∈ {0, 60, 120, 180, 240, 300} and D ∈ {0.0, 

0.5}. Training and validation accuracies achieved are 

illustrated in Error! Reference source not 

found.(d1). In the ψ test, a static first layer was 

implemented using the Gabor filter bank by changing 

the ψ ∈ {0, 60, 120, 180, 240, 300} and D ∈ {0.0, 

0.5}. ψ calculating at 0 and 360 provided the same 

result, so the 360 test case was neglected. Training 

and validation accuracy are illustrated in Error! 

Reference source not found.(e1). 

 

 

 

 

 

 
(a1) (a2) 

  
(b1) (b2) 
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(c1) (c2) 

  
(d1) (d2) 

  
(e1) (e2) 

Figure 5. Training and validation accuracy, left: changing Gabor parameters in GCNN, right: changing epoch of CNN model 1 and GCNN (a) σ, (b) λ, (c) θ, (d) γ, 

(e) ψ. 

 

Table 3: Highest training and validation accuracy of the GCNN with static first Gabor layer. 

 

 

Dropout σ λ θ γ ψ 
Training Validation 

Accuracy Loss Accuracy Loss 

0 14 50 0 150 0 0.9790 0.1340 0.8024 2.1065 

0.5 6 50 0 150 0 0.9208 0.2567 0.8768 0.7960 

0 10 20 0 150 0 0.9885 0.0657 0.8015 2.3630 

0.5 10 40 0 150 0 0.9437 0.1805 0.7908 0.9356 

0 10 50 0 150 0 0.9793 0.0753 0.8037 1.6760 

0.5 10 50 60 150 0 0.9452 0.1763 0.8364 0.7158 

0 10 50 0 0 0 0.9389 0.6047 0.7787 4.9222 

0.5 10 50 0 180 0 0.8591 0.4497 0.7925 0.8572 

0 10 50 0 150 300 0.9466 0.3743 0.7886 2.3969 

0.5 10 50 0 150 300 0.8858 0.3621 0.6919 0.8192 
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ii. Effect of epoch 

Training accuracy decreased when dropout was 

introduced to the GCNN. It can be observed that the 

error increases with dropout. There appears to be no 

significant pattern in terms of σ. The highest training 

and validation accuracies were achieved when σ = 14 

and σ = 6 for dropouts 0.0 and 0.5, respectively. 

Considering Figure 5(a2), it can be concluded that for 

both dropout values 0.0 and 0.5, the training and 

validation accuracies of the GCNN are higher than 

CNN accuracy for each epoch. So, the convergence of 

the GCNN is faster than the corresponding CNN 

model. In addition, according to Figure 5(a2), σ has 

no significant impact on the final results. 

According to Figure 5(b2), It can be observed that 

the accuracy levels are very close to each other and 

irregular like the σ. For both dropout values of 0.0 

and 0.5, λ appears to be good in the range [20, 100]. 

When dropout is introduced to the GCNN 

architecture, there is no significant change in 

performance. The important conclusion of this test is 

that λ = 0 should never be used for the Gabor filter 

parameter setting because the network has trouble 

learning when there is no value given to lambda. The 

highest training and validation accuracy levels were 

obtained when λ = 20 and λ = 40 for dropout values 

0.0 and 0.5 respectively. Considering Figure 5(b2), it 

can conclude that for dropout value 0.0, the training 

and validation accuracy of the GCNN with λ = 20 

become almost similar to CNN accuracy for higher 

epochs. For dropout value 0.5, the validation accuracy 

of both CNN and GCNN with λ = 40 becomes very 

close when the number of epochs increases. In 

contrast, the training accuracy of GCNN is higher 

than the CNN for a higher number of epochs. 

When θ = 0 and θ = 60, the highest accuracy level 

can be obtained for the dropout at 0.0 and 0.5, 

respectively. It is shown that there is no significant 

impact on the training and validation accuracy when 

introducing the dropout to the GCNN. According to 

Figure 5(c2), training accuracy may decrease with the 

higher value of θ for both dropout values. In addition, 

there is no significant pattern to recognize from the 

accuracy level and they are very close to one another. 

Considering Figure 5(c2), it can conclude that, for 

dropout 0.0 the training and validation accuracy of the 

CNN and GCNN with θ = 0 becomes almost similar 

for higher epochs. For dropout value 0.5, the 

validation and training accuracy of GCNN with θ = 

60 is higher than the corresponding CNN accuracy. 

As discussed, different features at each frequency can 

be extracted by rotating the Gabor filters; hence 

Gabor filter is considered an alternative to transfer 

learning (Pham, 2019). 

When γ = 0 and γ = 180, the highest accuracy level 

can be obtained for the dropout at 0.0 and 0.5 

respectively. Training accuracy was decreased when 

introducing the dropout effect. It can be observed that 

there is no significant pattern visible when increasing 

the γ value. Considering Figure 5(d2), it can conclude 

that, for dropout 0.0, the training and validation 

accuracy of the GCNN with γ = 0 becomes almost 

similar to CNN accuracy for the higher epoch. For 

dropout value 0.5, the training and validation 

accuracy of GCNN with γ = 180 is higher than the 

corresponding CNN accuracy.  

According to Figure 5(e2), it is clear that there is a 

range for the Gabor variable ψ. ψ values available 

within the range [120, 240] should never be used. The 

GCNN network has difficulty in training when ψ 

variable values are within this interval. The accuracy 

levels do not significantly change when adding 

dropout to the network. When ψ = 300 highest 

accuracy level can be obtained for both dropouts 0.0 

and 0.5. The highest training and validation accuracy 

of the GCNN with static first Gabor layer are 

provided in Table 3. 

Gabor filters are based on the mathematical 

equation with the parameters σ, λ, θ, γ, and ψ. When 

the value of λ is 0, the GCNN network fails to 

converge and does not train as expected. As the 

Gabor filter is subject to its rotational behavior to 

extract features, θ should have the most importance. 

However, in the above experiment using a single 

parameter value for θ does not show a significant 

impact. Subject to the constructed Sinhala character 

dataset, it can be concluded that λ should not be equal 

to 0. The results show that when the value of 

parameter ψ is in [120, 240], the network is unable to 

provide any significant results. The parameter ψ 

should not be in [120−240] to obtain the optimal 

accuracy level. Table 3 presents the highest values 

achieved for each experiment and Table 4 

summarizes the results obtained from the experiment. 

 

Table 4. Summary 
Parameter σ λ θ γ ψ 

Impact Low Low High Low High 

Best value 

range 
[2-14] 

[20-

100] 
0 180 [0-120] 

Worst value 

range 
- 0 - - 

[120-

240] 

 

iii. Testing on the GCNN model 

The parameter values of the Gabor filter bank are 

obtained by considering the results obtained from the 

above experiment and the trial-and-error method to 

achieve higher accuracy. For the test, 30 epochs are 

considered. Filter size will remain at 5×5 at 32 filters 

in the initial layer. Grid search was applied to 

determine the Gabor filter bank. The test was carried 

out for four different dropout values D ∈ {0.0, 0.25, 

0.5, 0.8}. 

The training and validation accuracy of the GCNN 

model are listed in Table 5. Here 30 epochs have been 

used for four different dropout values D ∈ {0.0, 0.25, 
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0.5, 0.8}. Finally, the comparison of two different 

CNN architectures and GCNN architecture is listed in 

Table 6 and plotted in Figure 6 for each epoch. 

 

Table 5. Results of the GCNN model  

Dropout 
Training Testing 

Accuracy Loss Accuracy Loss 

0.00 0.9575 0.2896 0.7503 3.4728 

0.25 0.9515 0.2652 0.8067 2.1316 

0.50 0.9030 0.3127 0.7908 1.0172 

0.80 0.6455 1.1720 0.6659 1.1311 

 

According to Table 5, the highest training and 

validation accuracy was achieved at 0.25 dropout 

value. Compared with the CNN model 1 results, the 

training accuracy of the GCNN is reduced by 

approximately 3%, and the validation accuracy is 

reduced by approximately 5%. But considering Table 

6, it can be concluded that the convergence speed of 

the GCNN is higher than the CNN models 1 and 2. 

 

Table 6. Comparison of two different CNN networks 

and GCNN 

Epoch 

Accuracy 

Training Validation 

CNN 

model 

1 (D = 

0.5) 

CNN 

model 

2 (D = 

0.5) 

GCNN 

model 

(D = 

0.25) 

CNN 

model 

1 (D = 

0.5) 

CNN 

model 

2 (D = 

0.5) 

GCNN 

model 

(D = 

0.25) 

1 0.0235 0.0232 0.1392 0.0628 0.0568 0.3319 

2 0.0505 0.0525 0.3892 0.0917 0.1507 0.5045 

3 0.0835 0.1177 0.5258 0.1464 0.2514 0.5971 

4 0.1553 0.2009 0.6438 0.3349 0.3577 0.6263 

5 0.2500 0.2821 0.7448 0.4339 0.4580 0.6823 

6 0.3533 0.3427 0.8022 0.5381 0.5118 0.7099 

7 0.4237 0.4237 0.8473 0.5549 0.5428 0.7314 

8 0.4819 0.4753 0.8711 0.6367 0.5669 0.7508 

9 0.5373 0.5198 0.8941 0.6931 0.6259 0.7486 

10 0.5962 0.5729 0.9087 0.7077 0.6457 0.7908 

 

 
Figure 6. Comparison of two different CNN networks 

and GCNN. 

 

When comparing CNN model 1 with a dropout of 

0.5 and GCNN with a dropout of 0.25 their eventual 

accuracy levels are close to each other. However 

GCNN structures converge to the accuracy level 

faster than the corresponding CNN models. So, Gabor 

filters can be applied in the initial layer of the CNN 

model instead of convolutional learning in the first 

layer, even though GCNN reduces the accuracy level 

by approximately 5% under the same 

hyperparameters. In addition, by the trial-and-error 

method, it is found that the constructed Sinhala 

character image dataset provides a better accuracy 

level with a smaller number of filters in the Gabor 

filter bank. As a part of this research, the impact of 

the Gabor variables is investigated. The five 

parameters, σ, λ, θ, γ, and ψ in the Gabor filter have a 

remarkable impact on training performance as some 

values cause decreased performance, increased 

performance, or are unable to converge. It was found 

that variables θ and ψ have a higher impact on the 

training. It was found that the λ should not be equal to 

zero. When λ is greater than zero, it behaves similarly 

to the variables σ and γ in the training phase.  

V. CONCLUSION 

This research proposed two CNN architectures and 

one Gabor-initialized CNN (GCNN) architecture for 

the Sinhala character recognition. Since the 

unavailability of an appropriate Sinhala character 

image dataset for the research, a dataset of 6,000 

character images was constructed for all Sinhala 

characters in the alphabet. The CNN model 1 

consisted of five convolutional layers with a max-

pooling layer between some convolutional layers. In 

CNN model 2, the input layer is directly fed into the 

max-pooling layer and then fed into four 

convolutional layers. Both CNN architectures 

introduced a dropout layer with 0.0, 0.25, 0.5, and 0.8 

values before the fully connected layer to obtain how 

the dropout effect affects CNN's performance. We 

further experimented with the importance of the 

Gabor parameters. Accordingly, Gabor parameter λ 

should not be equal to 0, and the value of parameter ψ 

should not be in the range between [120−240] to 

obtain the optimal accuracy level. In the GCNN 

architecture, trained layers of CNN are replaced by 

fixed Gabor kernels to reduce expensive computation 

within the layers. We applied Gabor filter 

initialization to the first layer of the CNN 

architecture. It is observed that the GCNN trains 

faster than the corresponding CNN architecture in the 

initial epochs. It is concluded that the GCNN is 

capable of training faster in the early phases of the 

training process. This can prove that GCNN can 

enhance the convergence of the network and reduce 

the training time with the same or slightly less 

accuracy. Considering the strengths and limitations of 

proposed CNN architectures and GCNN, the more 

significant architecture was selected to recognize the 

Sinhala characters. This research has applied the 

Gabor-initialization method only for the initial layer 

of the CNN. It can apply to all the convolutional 

layers. It is important to experiment with how the 

performance of the GCNN varies when introducing 

the Gabor initialization method for other 

convolutional layers. All experiments conducted 
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above use the grid search for assigning values for the 

parameters of the Gabor filter. It is important to 

examine the behavior of the GCNN network with 

other Gabor initialization methods, such as random 

initialization. Experiments can be conducted to find 

the performance of the GCNN architecture when 

varying the filter size. 
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